An effective algorithm for mining sequential generators
نویسندگان
چکیده
منابع مشابه
CMRULES: An Efficient Algorithm for Mining Sequential Rules Sequential Rules
We propose CMRULES, an algorithm for mining sequential rules common to many sequences in sequence databases not for mining rules appearing frequently in sequences. For this reason, the algorithm does not use a sliding window approach. Instead, it first finds association rules to prune the search space for items that occur jointly in many sequences. Then it eliminates association rules that do n...
متن کاملAn Algorithm for Mining High Utility Closed Itemsets and Generators
Traditional association rule mining based on the support-confidence framework provides the objective measure of the rules that are of interest to users. However, it does not reflect the utility of the rules. To extract non-redundant association rules in support-confidence framework frequent closed itemsets and their generators play an important role. To extract non-redundant association rules a...
متن کاملAn Efficient Hybrid Algorithm for Mining Frequent Closures and Generators
The effective construction of many association rule bases requires the computation of both frequent closed and frequent generator itemsets (FCIs/FGs). However, these two tasks are rarely combined. Most of the existing solutions apply levelwise breadth-first traversal, though depth-first traversal, depending on data characteristics, is often superior. Hence, we address here a hybrid algorithm th...
متن کاملMining and Ranking Generators of Sequential Patterns
Sequential pattern mining first proposed by Agrawal and Srikant has received intensive research due to its wide range applicability in many real-life domains. Various improvements have been proposed which include mining a closed set of sequential patterns. Sequential patterns supported by the same sequences in the database can be considered as belonging to an equivalence class. Each equivalence...
متن کاملAn Efficient Algorithm for Mining Sequential Rules with Interestingness Measures
Mining sequential rules are an important problem in data mining research. It is commonly used for market decisions, management and behaviour analysis. In traditional association-rule mining, rule interestingness measures such as confidence are used for determining relevant knowledge. They can reduce the size of the search space and select useful or interesting rules from the set of the discover...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Procedia Engineering
سال: 2011
ISSN: 1877-7058
DOI: 10.1016/j.proeng.2011.08.684